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ABSTRACT

Cyclic peptoids were efficiently synthesized on a solid phase in high yields utilizing ring-closing metathesis (RCM). This method should be a
valuable tool for easy access to cyclic peptoid libraries and various cyclic compounds.

With the completion of the human genome projects,
one of themost important scientific issues is understanding
the biological function of each protein including the
protein-protein interaction events. In chemical biology
studies and drug discovery, various chemical tools with
a high affinity and high specificity against proteins must
be developed. Although peptides are an attractive class
of molecules that contain protein-binding properties,
they possess several undesirable drawbacks including
a sensitivity to proteases, limited cell permeability, and
poor bioavailability. Thus, new peptidomimetics with im-
proved pharmacokinetic characteristics are increasingly
needed.1

Among them, peptoids, N-alkylated glycine oligomers,
are easily synthesized on a solid phase with a huge
diversity,2 proteolytically resistant,3 and much more cell
permeable,4 compared to peptides. In some cases, these

oligomers can also adopt stable secondary and even more
complex structural features and have proven to possess a
variety of interesting bioactivities.5 Additionally, cyclic
peptides and depsipeptides have received a great deal of
attention because of their challenging chemical synthesis
and numerous interesting bioactivities.6 Indeed, many
naturally occurring bioactive molecules have been
found in cyclic forms. Generally, cyclic peptides exhibit an
enhanced cell permeability7 and improved resistance to
enzymatic degradation.8Moreover, cyclicmoleculesmight
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be presumed to bind more tightly to their protein targets
becauseof theirmore restricted conformational flexibility.9

Cyclic peptides have been prepared using various solid-

phase synthetic methods to create combinatorial

libraries.10 These peptides have been revealed to possess

antibiotic activities,11 enzymatic inhibitory activities,12 and

therapeutic properties.13 The limitations of peptides, along

with the fascinating properties of cyclic molecules and

peptoids, have led to the development of cyclic peptoids.

Recently, we have already developed the ‘one-bead two-

compound’ strategy, which is optimized for the con-

struction of cyclic peptoid microarrays.14 Generally, the

macrocyclization of peptoids has been achieved through a

head-to-tail cyclization, ligation of the side chains, and

polymerization.15

In addition to the previous efforts,we alsopaid attention
to olefin metathesis, more exactly, ring-closing metathesis

(RCM) on a solid phase as a newmacrocyclizationmethod

for the construction of cyclic peptoids. Olefinmetathesis is

a representative carbon-carbon bond formation reaction,

which has been applied for many chemical syntheses and

industrial uses.16 Usually, olefin metathesis has been well

studied in a solution phase, and even in an aqueous phase.

Manymetathesis catalysts havebeendeveloped for various

needs including the improvement of their activity and

efficiency. However, this metathesis reaction is still chal-

lenging on a solid phase, and only a few examples of solid-

phase RCMhave been demonstrated.17 These trials are on

a case-by-case basis, and a systematic approach has not yet

been developed. Additionally, low yields, ineffective cycli-

zation, and difficult elimination of ruthenium byproducts

are commonproblems for solid-phaseRCM.Especially, to

the best of our knowledge, the macrocyclization of pep-

toids using solid-phase RCMhas not been reported so far.

Thus, we herein describe an efficient approach for the

synthesis of cyclic peptoids through solid-phaseRCM, and

this method can be further applied for the easy generation

of cyclic peptoid libraries.

In this study, commercially available olefin metathesis
catalysts G1, G2, and HG2 were used (Figure 1). In

general, the catalysts (G1 and G2) with the phosphine

ligand were good for disubstituted cyclic olefins, and the

phosphine-free HG2 proved to be more versatile and well

tolerant to functional groups. Previous literatures showed

that the solid-phase olefin metathesis produced RCM

products in poor yields or polymerized compounds of

unknown nature. The success of the solid-phase RCM

reaction depended on the careful selection of the resins,

solvents, olefin metathesis catalysts, and types of alkene

fragments. Several linear model peptoids (1-4) from a

tetramer to an octamer, containing allylamines, where the

alkene functions were strategically positioned at the first

and lastmonomeric positions, were first synthesized on the

Rink amide resin (0.4 mmol/g) in order to test the con-

struction of cyclic peptoids (Figure 1). The terminal amino

groups were masked by the Boc group in all peptoids

before the RCM in order to prevent the ruthenium com-

plexes from being poisoned by the amino function.

The macrocyclization was attempted with the model

peptoids (1-4) using G1, G2, and HG2 under various

reaction conditions (see Table S2 in the Supporting

Information for details). Common metathesis solvents,

such as methylene chloride, 1,2-dichlorobenzene, and

1,2-dichloroethane, were employed. The RCM failed to

produce cyclic peptoids at high temperature or in a micro-

wave with G1 and G2. However, the corresponding cyclic

peptoids were synthesized frompeptoids 3 and 4withHG2

in very low yields (10-20%), and thus, the RCM could

potentially be optimized. In all cases, the linear peptoids

were either completely consumed or polymerized. The

reaction conditions for the solid-phase RCM were further

investigated because of the limited success in producing

metathesized products from the allylamine-containing

peptoids.

Figure 1. Model peptoids (1-4) containing allylamines at the
first and last monomeric positions, and amines and RCM
catalysts G1, G2, and HG2 employed in this study.
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Based on the RCM efficiency of different lengths of the
carbamate-protected acyclic amines,18 3-buten-1-amine

(abbreviated as Nbte) was used instead of allylamine.

The formation of the metallocyclobutane intermediates

could potentially be facilitated by increasing the length of

the hydrocarbon by one methylene unit in 3-buten-1-

amine. Thus, the model peptoid 5, which contained

3-buten-1-amine at the first and last positions, was synthe-

sized. This heptamer was reacted with G1, G2, and HG2

in 1,2-dichlorobenzene under microwave conditions for

2 min. After the compounds were released from the

resin by 92% TFA, the HPLC analysis showed that the

cyclic peptoid 6 was produced at yields of about 10%

and 20% with G1 and G2, respectively, while the yield

was about 80% with HG2 (Table 1). The formation of

homodimerized compounds was also observed in these

cases.
With this information in hand, the HG2 catalyst was

preferentially selected for the remainder of the RCM
reactions. Tetramer to heptamer (7-10) peptoids in dif-
ferent sizes with methylamines as the side chains were
prepared in order to systematically elaborate on the viabi-
lity of the RCM (Scheme 1). The reaction conditions

including the microwave conditions, the temperature,

and the reaction time, as well as the effects of the ring size,

were examined with respect to the cyclization. The macro-

cyclization of peptoids (7-10) was carried out using HG2

under microwave conditions. The yields were very high

(70-85%), but the small amounts of dimers or metathesis

products between the cyclic and linear peptoids were also

observed in the MALDI-TOF analysis. Then the same

RCMreactionswere also carried out inmethylene chloride

at 40 �C for 2 h. After the peptoids were cleaved from the

solid support, the cyclic peptoids were produced in much

higher yields (70-95%) along with <5% of the dimeric

products. These results revealed that the solid-phase RCM

of peptoids worked well with HG2 under both conditions,

even though the reflux conditions in methylene chloride

seemed slightly better.

Moreover, pentamer and hexamer (15-16) peptoids
with both 3-buten-1-amine at the first position and allyla-

mine at the terminal end were also synthesized on beads

(Scheme 2). The RCM of these two peptoids (15-16) was

performed to produce the cyclized peptoids at a modest

yield of 60-70%, emphasizing the importance of the

length of the alkenyl moiety for the favorable formation

of the metallocyclobutane intermediates.

Based upon these excellent findings, tetramers to hepta-
mers (19-29) with various side chains containing hydro-

phobic and protected hydrophilic groups were synthesized

using both Rink amide and TentaGel resins in order to

provewhether solid-phaseRCMcould generallyworkwell

in most of peptoids (Table 2). The RCM of these peptoids

in the presence of 2mol%HG2 catalyst was carried out at

40 �C. The HPLC analysis showed that the solid-phase

RCM produced cyclic peptoids in excellent yields (up to

almost the quantitative yield), regardless of their ring sizes

and the identity of side chains (Figure 2 and Figures

S11-S21 in the Supporting Information). Especially, it

would be valuable that the RCM also worked very well on

the hydrophilic TentaGel resin which is usually used in on-

bead screenings against biological targets. In addition, the

RCM approach for the solid-phase synthesis of cyclic

peptoids has the distinct advantage that the alkene

Scheme 1. RCM of Peptoids Containing 3-Buten-1-amines

Scheme 2. RCM of Peptoids Containing Both 3-Buten-1-amine
and Allylamine

Table 1. RCM of Peptoid 5 Using G1, G2, and HG2

entry catalyst conditionsa
time

(min)

yield

(%)b

1 G1 microwave 2 ∼10

2 G2 microwave 2 ∼20

3 HG2 microwave 2 ∼80

aThe reactions were carried out under microwave conditions at 300
W in 1,2-dichlorobenzene. bYield was calculated as transformation
efficiency determined by HPLC analysis.

(18) Kuhn, K. M.; Champagne, T. M.; Hong, S. H.; Wei, W. H.;
Nickel, A.; Lee, C.W.; Virgil, S. C.; Grubbs, R.H.; Pederson, R. L.Org.
Lett. 2010, 12, 984.



Org. Lett., Vol. 13, No. 7, 2011 1585

functional group of cyclic peptoid can be oxidatively
cleaved to provide a sequenceable linear molecule.
Thus, we simply tested the oxidative cleavage reaction
of a cyclic peptoid. Ozonolysis of a cyclic peptoid success-
fully resulted in the formation of the corresponding
linear compound (see the Supporting Information for
details).
In summary,wehave successfully developed the efficient

synthesis of cyclic peptoids using solid-phase RCM, re-
gardless of the ring sizes for 16- to 25-membered cyclic
peptoids. The phosphine-free catalyst HG2 was a better
catalyst than G1 and G2 for the solid-phase RCM. The
solid-phase RCM could be carried out both under micro-
wave conditions and at 40 �C, even though the conditions
in methylene chloride at 40 �C might be slightly better for
minimizing the formation of the dimerized products or

other byproducts. The advantages of 3-buten-1-amine
over allylamine were clearly evident. This RCM-based
macrocyclization is a valuable addition to the synthetic
methods that have been used for the synthesis of
cyclic peptoids. Additionally, alkene function in the cycles
could be oxidatively cleaved by ozonolysis for the purpose
of sequence determination and can also be used for
further postchemical modifications. This systematic study
into the use of solid-phase RCM for the synthesis of cyclic
peptoids provides a particularly valuable tool for easy
access to the molecular sources of cyclic compounds and
the rapid generation of cyclic peptoid libraries. The bio-
logical application studies including binding assays of
cyclic peptoids against proteins of interest are currently
underway.
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Figure 2. RP-HPLC chromatograms of the crude linear peptoid
(20a) before the RCMand the crude cyclic peptoid (31) after the
solid-phase RCM.

Table 2. RCM of Peptoids Containing Arbitrary Sequencesa

entryb
L-

PO

C-

PO sequence

yield

(%)c

1 19 30 c(Nbte-Nffa-Nmea-Nbte) 78

2 20 31 c(Nbte-Nmea-Nleu-Nffa-Nbte) >95

3 21 32 c(Nbte-Nmea-Nleu-Nffa-Nmea-Nbte) 80

4 22 33 c(Nbte-Nlys-Nffa-Nasp-Nmea-Nbte) 82

5 23 34 c(Nbte-Nmea-Nleu-Nffa-Nmea-Nleu-Nbte) 81

6 24 35 c(Nbte-Nffa-Nlys-Nbte) 88

7 25 36 c(Nbte-Npip-Nmea-Nffa-Nbte) 91

8 26 37 c(Nbte-Nffa-Nasp-Npip-Nbte) 92

9 27 38 c(Nbte-Nmea-Npip-Nffa-Nleu-Nbte) 89

10 28 39 c(Nbte-Nlys-Nffa-Nasp-Nmea-Nbte) 87

11 29 40 c(Nbte-Nmea-Nlys-Nffa-Nasp-Nleu- Nbte) 94

aThe reactions were typically carried out by using 2 mol % HG2 in
methylene chloride at 40 �C for 2 h. bRink Amide AM resin and
TentaGel MB RAM resin were used in entries 1-5 and entries 6-11,
respectively. cYield was calculated as transformation efficiency deter-
mined by HPLC analysis.


